May 22, 2024

IDTechEx Asks if Silicon Anodes Are the Key to Mass EV Adoption. Maximizing energy density has been one key area of focus in electric vehicle battery development. Optimizations in cell and battery pack designs, alongside the use of higher nickel NMC and NCA cathodes, have led to steady improvement in battery energy density over the past 10-15 years. The energy density limit from current design and material iterations has largely been maximized. However, a promising contender is emerging on the horizon to offer a step-change improvement – silicon. IDTechEx forecast the market for silicon anode material for Li-ion batteries to exceed US$24 billion by 2034. This article draws from the new IDTechEx report, “Advanced Li-ion Battery Technologies 2024-2034: Technologies, Players, Forecasts“, which includes analysis on the latest in silicon anode developments. Silicon anode performance benefits Silicon has a theoretical capacity of nearly 3600 mAh/g (at room temperature), offering the possibility to significantly boost energy densities by replacing graphite, which is used as the anode material in the vast majority of Li-ion batteries. By replacing graphite, which has a capacity of approximately 360 mAh/g, with silicon, cell-level energy densities in excess of 400 Wh/kg and 1000 Wh/l become feasible, with the potential to nearly double the energy density of state-of-the-art commercial cells in 2024. This leap in energy density could translate into electric vehicles with twice the range or electronic devices with twice the runtime. But the benefits of silicon extend beyond just capacity and energy density. Many silicon anode companies are reporting improved power and fast charging capabilities, an increasingly important performance metric for electric vehicles, as well as other applications such as power tools or consumer devices. Additionally, the more positive voltage of silicon compared to graphite helps reduce the risk of lithium plating, enhancing battery safety, another increasingly important concern for the industry. Commercialization efforts ramping up Currently, silicon oxides can only be used at relatively low weight percentages,

https://batteriesnews.com/idtechex-asks-if-silicon-anodes-are-the-key-to-mass-ev-adoption/